skip to main content


Search for: All records

Creators/Authors contains: "Balachandran, Prasanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Creating materials that do not exist in nature can lead to breakthroughs in science and technology. Magnetic skyrmions are topological excitations that have attracted great attention recently for their potential applications in low power, ultrahigh density memory. A major challenge has been to find materials that meet the dual requirement of small skyrmions stable at room temperature. Here we meet both these goals by developing epitaxial FeGe films with excess Fe using atomic layer molecular beam epitaxy (MBE) far from thermal equilibrium. Our atomic layer design permits the incorporation of 20% excess Fe while maintaining a non-centrosymmetric crystal structure supported by theoretical calculations and necessary for stabilizing skyrmions. We show that the Curie temperature is well above room temperature, and that the skyrmions have sizes down to 15 nm as imaged by Lorentz transmission electron microscopy (LTEM) and magnetic force microscopy (MFM). The presence of skyrmions coincides with a topological Hall effect-like resistivity. These atomically tailored materials hold promise for future ultrahigh density magnetic memory applications.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract In recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other branches of science. With this in mind, this Roadmap article, consisting of multiple contributions from experts across the field, discusses the use of machine learning in materials science, and share perspectives on current and future challenges in problems as diverse as the prediction of materials properties, the construction of force-fields, the development of exchange correlation functionals for density-functional theory, the solution of the many-body problem, and more. In spite of the already numerous and exciting success stories, we are just at the beginning of a long path that will reshape materials science for the many challenges of the XXIth century. 
    more » « less